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We investigate the Josephson current between two superconductors �S� which are connected through a
diffusive magnetic junction with a complex structure �Fc�. Using the quantum circuit theory, we obtain the
phase diagram of 0 and � Josephson couplings for Fc being an insulator-ferromagnet-insulator �IFI� double
barrier junction or an IFNFI structure �where N indicates a normal-metal layer�. Compared to a simple SFS
structure, we find that the width of the transition, defined by the interval of exchange fields in which a 0-�
transition is possible, is increased by insulating barriers at the interfaces and also by the presence of the
additional N layer. The widest transition is found for symmetric Fc structures. The symmetric SIFNFIS presents
the most favorable condition to detect the temperature-induced 0-� transition with a relative width, which is
five times larger than that of the corresponding simple SFS structure.
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I. INTRODUCTION

Ferromagnet-superconductor �FS� heterostructures feature
novel and interesting phenomena, which have been active
topics of investigation for more than half a century.1–3 Mean-
while, Josephson structures comprising a ferromagnetic
weak link have been studied extensively. The existence
of the � junction in a superconductor-ferromagnet-
superconductor �SFS� structure is one of the most interesting
phenomena, which occurs for certain thicknesses and ex-
change fields of the ferromagnet �F� layer.7–23 This manifes-
tation is due to the oscillatory behavior of the superconduct-
ing pair amplitude and the electronic density of states in the
ferromagnet.4–6 In a � junction the ground-state phase dif-
ference between two coupled superconductors is � instead of
0 as in the usual 0-state superconductor-normal-metal-
superconductor �SNS� junctions. The existence of a � state
was predicted theoretically by Bulaevski et al.7 and Buzdin
et al.,8 and has been first observed by Ryazanov et al.9 The
transition from the 0 to � state is associated with a sign
change in the critical current, Ic, which leads to a cusplike
dependence of the absolute values of Ic on temperature.
Later, the nonmonotonic temperature dependence of the criti-
cal current in diffusive contacts was observed in other
experiments10–14 and was attributed to the 0-� transition in-
duced by the ferromagnetic exchange field. The 0-� transi-
tion has been studied theoretically by several authors in
clean15–18 and diffusive17–23 Josephson contacts for different
conditions and barriers at the FS interfaces.

An interesting application of a � junction is a supercon-
ducting qubit as one of the most noticeable candidates for
a basic element of quantum computing. Furthermore,
� junctions have been proposed as phase qubit elements
in superconducting logic circuits.24–28 Also, a phase
qubit in superconductor-insulator-ferromagnet-insulator-
superconductor �SIFIS� junctions, in which the qubit state is
characterized by the 0 and the � phase states of the junction,
has recently been suggested.29 Due to these exciting pro-
posed applications, the detection of 0-� transitions with very
high sensitivity is necessary. Investigating the phase dia-

grams of 0-� transitions15,30 for different structures with dif-
ferent characteristics should make it possible to determine
the most efficient control of the 0-� transition.

In this paper we investigate the width of the temperature-
induced 0-� transition in a diffusive SFcS junction. Here, Fc
represents a complex ferromagnetic junction of length L,
which consists of diffusive ferromagnetic and normal metal-
lic parts as well as insulating barriers. We define the width of
the transition as the interval of exchange fields, in which the
temperature-dependent transition from the 0 to � phase is
possible. We use the so-called quantum circuit theory �QCT�,
which is a finite-element technique for the quasiclassical
Green’s functions in the diffusive limit.31–33 The QCT de-
scription has the advantage, that it does not require to specify
a concrete geometry. By a discretization of the Usadel
equation34 one obtains relations analogous to the Kirchhoff
laws for classical electric circuit theory. These relations can
be solved numerically by iterative methods and one obtains
the quasiclassical Green’s function of the whole system. The
QCT has been generalized to spin-dependent transport in
Refs. 35 and 36. We adopt the finding of this paper for
ferromagnet-normal-metal �FN� contacts to handle our prob-
lem of the SFcS contacts. We discretize the interlayer be-
tween the superconducting reservoirs into nodes. Following
Refs. 36 and 37, every node in a ferromagnetic layer with
specific exchange field is equivalent to a normal node con-
nected to a ferromagnetic insulator reservoir which deter-
mines the exchange field. This similarity has been verified
experimentally with EuO�Al�Al2O3 �Al junctions.38 It has
been found that the induced exchange-field of the EuO insu-
lator, which is responsible for spin-splitting in the measured
density of states, was of the same order as its
magnetization.38 Also, the authors of Ref. 36 have shown
that the normalized density of states in the normal metal,
which is connected to a superconductor and an insulator fer-
romagnet at its ends, is the same as the one for a BCS su-
perconductor in the presence of a spin-splitting magnetic
field.39,40 This method allows us to calculate the Josephson
current flowing through the SFcS contact for an arbitrary
length L and all temperatures while fully taking into account
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the nonlinear effects of the induced superconducting correla-
tions.

We investigate the width of the transition, �h, for four
different cases of SFcS structures with ideally transparent
FS interfaces, symmetric SIFIS, asymmetric supercon-
ductor-insulator-ferromagnet-superconductor �SIFS� double
barrier F junctions, and more complicated superconductor-
insulator-ferromagnet-normal-metal-ferromagnet-insulator-
superconductor �SIFNFIS� structures �where I and N denote,
respectively, insulating barrier and normal metal�. For a fixed
length L, all these systems show several transition lines in
the phase diagram of T /Tc and h /Tc. Higher-order transitions
occur at large exchange fields h. We find that higher-order
transitions are wider than the first transition. Also, decreasing
the contact length L leads to a widening of the transitions
and, at the same time, to an increase in the exchange field,
hin, at which the transition starts. Nevertheless, the relative
width of the transition, given by the ratio �h /hin, decreases.

For the SIFIS structure we show that the existence of the
I barriers at the FS interfaces broadens the 0-� transitions
and, hence, improves the conditions to detect such transi-
tions. In addition, we find that a symmetric double-barrier
structure with the two barriers having the same conductance
shows wider transitions than the corresponding asymmetric
structure with the same total conductance but different con-
ductances of the barriers. An even larger width of transitions
can be achieved by including an additional normal-metal part
into Fc. This motivates our study of an SIFNFIS structure,
for which relative width �h /hin is in general larger than that
of the corresponding SIFIS with the same total conductance
and the mean exchange field of the Fc part.

The structure of this paper is as follows. In Sec. II, we
introduce the model and basic equations, which are used to
investigate the SFcS Josephson junction. We introduce the
finite-element description of our structures using quantum
circuit theory technique. In Sec. III, we investigate phase
diagrams of 0-� transitions for the SFS, SIFIS, and SIFNFIS
structures. Analyzing our findings, we determine the most
favorable conditions for an experimental detection of the 0-�
transitions. Finally, we conclude in Sec. IV.

II. MODEL AND BASIC EQUATIONS

We consider a ferromagnetic SFcS Josephson structure in
which two conventional superconducting reservoirs are con-
nected by a complex diffusive Fc junction. We investigate
three cases of Fc: �i� a simple F layer with a
homogeneous spin-splitting exchange field h �SFS�,
�ii� a double-barrier insulator-ferromagnet-insulator �IFI�
structure, in which the F layer is connected via I barriers to
the reservoirs �SIFIS�, and �iii� an insulator-ferromagnet-
normal-metal-ferromagnet-insulator �IFNFI� junction com-
posed of two ferromagnetic layers with the same length LF
and the same exchange field and a normal metal with length
LN in between such that L=LN+2LF �SIFNFIS�. We compare
the width of the temperature-induced 0-� transitions for
these three types of structures. In all cases Fc has the same
length, total conductance, and the mean exchange field h.

In our approach, we make use of the quantum circuit
theory, which is a finite-element theory technique for the

quasiclassical Green’s function method in diffusive
limit.31–33 In this technique, each part of the structure is rep-
resented by a node which is connected to other nodes or
superconductor/ferromagnet reservoirs.36 The Green’s func-
tions are calculated by using balance equations for matrix
currents entering from the connectors, which is described in
terms of its transmission properties and the Green’s functions
of the nodes forming it, to each node. For calculations we
follow the procedure similar to that of Ref. 37. We discretize
the conducting part of Fc into n nodes as presented in Fig. 1.
A node in the ferromagnetic part will be presented by a
normal-metal node connected to a ferromagnetic insulating
reservoir �FIR�, which induces an exchange field equal to the
exchange field of the ferromagnetic part at the place of the
node.

Each of the superconducting reservoirs is assumed to be a
standard BCS �Bardeen-Cooper-Schrieffer� superconductor.
Our circuit connecting those reservoirs consists of different
types of nodes in Fc. One type are the normal nodes in the
middle of Fc, each of which is connected to two neighboring
nodes which are either normal nodes or F nodes. Another
type are F nodes placed at the two ends of Fc, where each of
them, in addition to its connection to two neighboring nodes,
is connected to FIR as well and, hence, feels the exchange
field directly. As can be seen in Fig. 1, each of the two
neighboring nodes of a F node can be another F node, an N
node, or a superconducting node. We denote the conduc-
tances of the tunnel barriers at S1F and FS2 interfaces by
gS1F and gFS2, respectively. Also, gT represents the conduc-
tance of the tunnel barrier between each two nodes inside Fc;
gT is determined by gFc

, the total conductance of Fc, exclud-
ing the conductances of the barriers at the interfaces
�n−1� /gT= �1 /gFc

�− �1 /gS1F+1 /gFS2�. In general, a node i is

characterized by the Green’s function Ǧi, which is an energy-
dependent 4�4 matrix in the Nambu and spin spaces. Fur-
thermore, all nodes in Fc are assumed to be coupled to each
other by means of tunneling contacts. However, a finite vol-
ume of a node and the associated decoherence between elec-
tron and hole excitations are taken into account by the leak-
age matrix current, which is proportional to the energy, �,
and the inverse of the average level spacing in the node,
�.31,32
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FIG. 1. �Color online� Quantum circuit model of the SFcS struc-
ture. The contact Fc is discretized into n nodes which are connected
to each other by tunnel barriers of conductance gT; gS1F and gFS2

denote the conductances of S1F and FS2 interfaces, respectively.
The inverse of the average level spacing, �, represents the leakage
term due to a finite volume of a node; FIR represents a ferromag-
netic insulating reservoir.
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For a structure with spin-dependent magnetic contacts and
in the presence of F and S reservoirs, the matrix current was
developed in Ref. 36. In the limit of tunneling contacts,
which is our interest, the matrix current between two nodes
i , j is defined as36,41

Ǐi,j =
gi,j

2
�Ǧi,Ǧj� +

GMR

4
���h� i . �̂� �	̂3,Ǧi�,Ǧj�

+ �i
GQ

�i
�h� i . �̂� �	̂3,Ǧj	 . �1�

The first term demonstrates the usual boundary condition
for a tunneling junction, where gi,j is the tunneling conduc-
tance of the contact between the two nodes. The second term
exists due to the different conductances for different spin
directions, which leads to the spin-polarized current through
the contact. We assume this term to be negligible as GMR

gi,j

↑ −gi,j
↓ 
gi,j. Also, GQ�e2 /2�� is the quantum of con-

ductance, h� is the exchange field of the node, and �� and 	� are
the vectors consisting of Pauli matrices in spin and Nambu
space.

Using Eq. �1� for different matrix currents entering into a
given node i, we apply the condition of current conservation
to obtain the following balance equation:

� �
j=i−1,i+1

gj,i

2
Ǧj + i

GQ

�i
�h� i . �̂� �	̂3 − i

GQ

�i
�	̂3�̂0,Ǧi	 = 0. �2�

Here, the first term represents the matrix currents from
neighboring nodes i−1, i+1, which could be F, N, or S. The
second and third terms are, respectively, the exchange term
and the leakage matrix current. Also, �̂0 represents unit ma-
trix in spin space.

We consider the case, in which the exchange field in the
ferromagnetic parts of Fc is homogeneous and collinear.
Then, it is sufficient to work with the 2�2 matrix Green’s
function of spin-� ��= ↑ /↓� electrons in Nambu space. In
the Matsubara formalism the energy � is replaced by Mat-
subara frequency i
= i�T�2m+1� and the Green’s function
has the form

Ĝ = 
G F

F� − G
� . �3�

Neglecting the inverse proximity effect in the right and
left superconducting reservoirs, we set the boundary condi-
tions at the corresponding nodes S1 and S2 to the bulk values
of the matrix Green’s functions,

Ĝ1,2 =
1

�
2 + �2
 
 �e�i�/2

�e�i�/2 − 

� . �4�

Here �e�i�/2 are, respectively, the superconducting order pa-
rameters in the right and left superconductors, and � is the
phase difference. The matrix Green’s function satisfies the

normalization condition, Ĝ2= 1̂. The temperature dependence
of the superconducting gap � is modeled by the following
formula:42,43

� = 1.76Tc tanh
1.74� T

Tc
− 1� . �5�

We scale the size of Fc in units of the diffusive supercon-
ducting coherence length, �S=��0limp, where �0=vF /��0
with vF being the Fermi velocity and �0=��T=0�=1.76Tc,
and limp is the mean-free path in the F layer related to the
diffusion coefficient via D=vF

�F�limp /3. Two more scales that
we use are h /Tc and T /Tc, where Tc is the critical tempera-
ture of S reservoirs. Also, the mean level spacing depends on
the size of the system via the Thouless energy ETh=D /L2

�gT� / �n−1�GQ �Planck and Boltzmann constants, � and kB,
are set to 1 throughout this paper�.

In the absence of spin-flip scatterings, the balance equa-
tion, Eq. �2�, is written for each spin direction separately for
all n nodes in Fc. This results in a set of equations for the n
matrix Green’s functions of the nodes that are solved numeri-
cally by iteration. In our calculation we start with choosing a
trial form of the matrix Green’s functions of the nodes, for a
given �, T, and the Matsubara frequency m=1. Then, using
Eq. �2� and the boundary conditions iteratively, we refine the
initial values until the Green’s functions are calculated in
each of n nodes with the desired accuracy. Note that in gen-
eral for any phase difference �, the resulting Green’s func-
tions vary from one node to another, simulating the spatial
variation along the Fc contact. From the resulting Green’s
functions we calculate the spectral current using Eq. �1� and
obtain

I =
T

4e
�2�i� �


m=−�


m=�

Tr�	̂3Î� . �6�

In the second step we set the next Matsubara frequency
m=2, find its contribution to the spectral current, and con-
tinue to the higher frequencies until the required precision of
the summation over m is achieved. Finding the spectral cur-
rent, for the given temperature and phase difference, enables
us to obtain the dependence of the critical current Ic on T.
Finally, we increase the number of nodes, n, and repeat the
above procedure until all the spectral currents for every tem-
perature and phase difference reach the specified accuracy.
We find that for typical values of the involved parameters, a
mesh of 60 nodes is sufficient to obtain Ic through the diffu-
sive Fc structure with an accuracy of 10−3 across the whole
temperature range.

III. RESULTS AND DISCUSSIONS

From the numerical calculations, described above, we
have obtained the phase diagram of 0-� transition in the
plane of h /Tc and T /Tc. We analyze the width of 0-� tran-
sitions for the SFS, symmetric SIFIS, asymmetric SIFS
double-barrier junctions, and SIFNFIS structures.

Concerning such transitions, the width �h defines the in-
terval of the h, in which a temperature-induced transition
occurs. We compare relative width, the ratio �h /hin, of dif-
ferent structures, where hin is the exchange field in which the
transition starts �see Fig. 2�a��. In practice, we fix the size of
the structures, L /�s, and then vary the value of h /Tc for
detecting the change in the sign of the critical supercurrent as
the transition occurs. We expect that the detection of a 0-�
transition can be more feasible for the structure having larger
�h /hin.
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A. SFS structures

First, we consider the SFS structure. Figure 2�a� presents
the typical 0-� transitions for such a junction with L /�s
=1.5, where the supercurrent is scaled in units of I0
= �� /2��0 /eRFc

. Here, RFc
is the total resistance of Fc. We

observe that the nonzero supercurrent at the transition point
is larger when the transition temperature is lower. Also, the
phase diagram is shown in Fig. 2�b� in the vicinity of the first
and the second 0-� transitions. At the first transition the
junction goes from the 0 to the � state starting at hin and T
=0. Increasing h, the transition temperature increases toward
Tc and above the value h=hin+�h, the junction will be in �
state at all temperatures. Increasing h further, the junction
stays at its � state until the exchange field reaches the value
at which the second transition starts �see Fig. 2�b��, where
the junction changes back to a 0 state. In principal, it is
possible to go to the higher exchange fields to see higher
transitions. However the amplitude of the supercurrent will
be extremely small and difficult to detect experimentally.

We have observed that the second transition is always
wider than the first one. In the case of Fig. 2�b�, the width of
the first transition is nearly 0.65 of that of the second one.
Furthermore, the relative width for first transition is 0.20,
while the second transition has �h /hin=0.06. This finding
can also be generalized to higher transitions. In brief, higher
transitions are always associated with larger widths. In spite
of having a smaller width, the first transition seems to be

more feasibly detectable since they have higher �h /hin.
Looking at the origin of the existence of 0-� transition,

we can understand this finding. An oscillating behavior of
the order parameter in a ferromagnetic layer makes the oc-
currence of different signs of order parameters of the super-
conductor reservoirs possible. This effect, being in charge of
the �-phase state, can be seen when the length of the ferro-
magnet is of the order of half-integer multiple of a period
2��F, where �F is the ferromagnetic coherence length of the
ferromagnet. In the diffusive limit when h�Tc, this length is
equal to �F=�D /h. Hence, as d�F /dh is inversely propor-
tional to the exchange field, when the exchange field be-
comes larger the rate of reduction of �F decreases and the
system will remain longer in the region of transition.

Now let us consider the effect of the length of F on the
width of the transition. In Fig. 2�c�, the width of the first
transition for three lengths L /�s=0.5, 1, 2 are compared. As
mentioned above, the condition for the occurrence of the first
transition is that the length L becomes of the order of half
integer of the period. For a smaller L this condition is ful-
filled at larger h, which, in light of the above discussion,
means a wider 0-� transition. This can be seen easily in Fig.
2�c�. Note that the transition between the two states always
starts from lower temperatures.

B. SIFIS, SIFS, and SIFNFIS structures

Next, we examine the effect of putting insulating barriers
at FS interfaces. In Fig. 3�a�, the typical 0-� transitions for
SIFIS structure with L /�s=1.5 are shown. As one can see,
the presence of barriers adjusts the nonzero minimum cusp
appearing in the diagram of the critical current versus tem-
perature. Figure 3�b� manifests the 0-� phase diagram for
the symmetric SIFIS �solid curve� and the asymmetric SIFS
�dashed curve� double barrier Fc. Compared to the corre-
sponding SFS with �h /hin=0.2, these structures show wider
transitions with �h /hin=0.93 for SIFIS of the conductance of
the barrier gS1F=gFS2=0.018gT, and �h /hin=0.61 for SIFS
of gS1F=0.1gFS2=0.1gT.

We have found that the strength of the barriers between
the FS junctions is the most important parameter for deter-
mining the width of 0-� transitions. On the one hand, as the
barriers get stronger the width of transitions becomes wider.
This widening will be more pronounced for short length
structures. On the other hand, for these structures the transi-
tion will start from a lower exchange field in comparison
with the corresponding SFS systems.

Considering the effect of the relative values of the con-
ductances of the two barriers, a symmetric SIFIS structure
shows broader transitions as compared to the asymmetric
SIFS structure with the same total conductance, as can be
seen in Fig. 3�b�.

In addition, considering the displacement of the barrier in
a S1I1F1I2F2S2 hybrid structure, we have found that the ef-
fect of barriers becomes more important as the barriers are
closer to the ends of Fc so that SIFIS is the most optimal
structure regarding the width of the transitions.

Finally, we have investigated the width of the 0-� transi-
tions for SIFNFIS structures. The phase diagrams are shown
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FIG. 2. �Color online� �a� Normalized critical current, Ic / I0, ver-
sus temperature for a SFS structure with the length LF /�s=1.5 and
different exchange fields h /Tc. The inset shows the current-phase
characteristic for h /Tc=5.1 in the vicinity of the 0-� transition
temperature. �b� The corresponding 0-� phase diagram showing the
phase boundaries up to the second transition. �c� Phase diagram of
the first 0-� transition for different lengths of the junction LF /�s.
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in Fig. 3�c� for junctions with L /�s=1.5 and various values
of the length of the N part, LN. We see that putting a normal
metal between the ferromagnets while keeping the magneti-
zation of the system constant increases the width of the tran-
sition somewhat. This can be due to stronger penetration of
superconductivity near the FS boundaries where the density
of magnetization is larger, which strengthens the mean effect
of exchange field.

We have also observed that increasing LN leads to a fur-
ther increase in the width of transition. However, this in-
crease is saturated at higher lengths. While the width for

SIFNFIS structures of LN=2LF is almost doubled compared
to the SIFS structure, it is increased by only a few percent by
increasing LN from 2LF to 4LF �see Fig. 3�c��.

It is worth to note that taking the absolute width �h as
measure of the feasibility to detect the temperature-induced
0-� transition will lead to similar results as those of obtained
above by considering the relative width �h /hin. However,
the definition by �h /hin seems to be more appropriate since
higher feasibility of detection requires not only larger �h,
but also smaller hin in order to have weaker exchange-
induced suppression of the supercurrent.

IV. CONCLUSION

In conclusion, we have investigated the width of 0-� tran-
sitions for various diffusive ferromagnetic Josephson struc-
tures �Fc� made of ferromagnetic �F� and normal-metal �N�
layers and the insulating barrier �I� contacts. We have per-
formed numerical calculations of the Josephson current
within the quantum circuit theory technique, which takes into
account fully nonlinear proximity effect. The resulting phase
diagram of 0 and � Josephson couplings in the plane of T /Tc
and h /Tc shows that the existence of the insulating barrier
contacts and the normal-metal interlayer leads to the en-
hancement of the relative width of the temperature-induced
transition. The relative width is parametrized by the ratio
�h /hin with �h and hin being, respectively, the exchange-
field interval upon which the transition is possible and the
initial value of h at which the transition occurs at T=0. We
have also observed that while the conductance, the magneti-
zation, and the length of the Fc junction are kept fixed, sym-
metric structures with the same barrier contacts and the same
F layers in a SIFNFIS structure show larger relative width of
the transition compared to that of the asymmetric structures.
Among the studied structures, a symmetric SIFNFIS junction
has the highest �h /hin, which makes it more practicable for
highly sensitive detection of the temperature-induced 0-�
transition.
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FIG. 3. �Color online� �a� Normalized critical current, Ic / I0, ver-
sus temperature of a symmetric SIFIS structure with gS1F=gFS2

=0.018gT for different h /Tc, when LF /�s=1.5. The inset shows the
corresponding I-� characteristic for h /Tc=2.0 in the vicinity of the
0-� transition temperature. �b� Phase diagram of 0-� transition for
a symmetric SIFIS structure with gS1F=gFS2=0.018gT �solid line�
and the corresponding asymmetric structure �dashed line� with
gS1F=0.1gFS2=0.1gT, when LF /�s=1.5. �c� The same as �b� but for
a symmetric SIFNFIS structure of gS1F=gFS2=0.018gT with
L /�s=1.5 and various LN /ŁF.
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